
2024 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
<SESSION NAME> TECHNICAL SESSION
AUGUST 13-15, 2024 - NOVI, MICHIGAN

MBSE STRATEGIES: AVOIDING CYCLIC PROJECT USAGE
DEPENDENCIES BY USING BLACK BOX AND WHITE BOX MODELS

Jason Kolligs, PhD1, Stuart Masterson1, Eric Thome2, Christian Knutson2

1Strategic Technology Consulting, Aberdeen, MD

2General Dynamics, Bothell, WA

ABSTRACT
Every digital engineering framework and modeling approach will include

benefits and concerns. It is important to customize the response, within reason and
based on the available resources, to the needs of the project and contract. For this
case, the consideration of a large, singular model was overturned for a distributed
model. The potential for a cyclic usage, which can be catastrophic in both
performance issues and data loss, was mitigated by an innovative approach that
allowed for two (2) systems models – one (1) Black Box and one (1) White Box –
using a novel model federation strategy. The concerns of having two (2) system
models were mitigated via acceptance and understanding that each system model
would play its part appropriately based on model function, system development,
and contract deliverables.

Citation: J. Kolligs, S. Masterson, E. Thome, C. Knutson, “MBSE Strategies: Avoiding Cyclic Project Usage
Dependencies using Blackbox and Whitebox Models,” In Proceedings of the Ground Vehicle Systems Engineering
and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2024.

1. INTRODUCTION

Systems engineering is often charged with
changing the perspective on a project to
facilitate solution generation. Large, complex
systems that involve multiple partners and
external actors require flexible digital
engineering approaches that allow for
modeling to include input from those partners
while supporting data quality and
configuration management. Using project
usages in a model is a viable approach,

however it can pose challenges. In the case
described herein, the planned contents of the
models were well understood while the
project usage architecture posed a challenge
that was rife with potential for cyclic usages
or dependencies. This paper establishes
background information (Section 2) to
prepare the reader to better understand the
challenge (Section 3) and then describes the
solution and rationale (Section 4,5, & 6).

2. BACKGROUND

The concepts of Project Usages, Cyclic
Usages (or Cyclic Dependencies), and Black

DISTRIBUTION A. Approved for public release;
distribution unlimited. OPSEC #: (Pending, NOT
approved for release.)

Proceedings of the 2024 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MBSE Strategies: Avoiding Cyclic Project Usage Dependencies using Blackbox and Whitebox Models, Kolligs, et
al.

Page 2 of 7

Box/White Box Modeling are described here
to provide context in defining the challenge
and solution.

2.1. Project Usages

Project usages are used within Cameo and
other modeling tools to import a model into
another project [1]. Project usage models
cannot be modified in the current project, but
their elements are available for usage in the
project, i.e. project usages are read-only. For
example, Model A (a System Model) could
import Model B (a Requirement Set) as a
project usage. Model A would be able to see
and relate the requirement elements in Model
B without compromising the configuration
management of Model B. The practice of
project usages is common and is often used
to include custom organizational profiles,
reference materials such as regulations and
standards, and other template or style guide
type projects.

2.2. Cyclic Usages

Cyclic usages, or cyclic dependencies, are
project usages within model-based systems
engineering (MBSE) that reference each
other in a circular manner, i.e. Project A has
a project usage of Project B which has a
project usage of Project A [2]. Cyclic
dependencies create an infinite loop or
references that will eventually lead to
resource issues that can be realized as model
crashes or even model corruption at the
extreme cases. Figures 1 and 2 are examples
of simple cyclic usages.

Cyclic usages can be accidently created and
difficult to identify in more complex model
federations. For example, in Figure 1, Cameo
system recognizes the cyclic usage and
applies a warning icon while in Figure 2 the
Cameo tool is unable to identify the cyclic
usage despite its obvious presentation in the
diagram.

Figure 1: Example of Cyclic Usage with Two (2)
Components (Visualized using Cameo Resource

Map)

Figure 2: Example of Cyclic Usage with Three (3)
Components (Visualized using Cameo Resource

Map)

2.3. Black Box and White Box
Modeling

Black box modeling, also referred to as a
black box view, focuses on the system’s
external behaviors, such as the interfaces and
data flows, and does not reveal the internal
workings. More formally, a black box
“facilitates discussing a system at an abstract
level with a focus on input and output rather
than the details of how inputs are transformed
into outputs” [3]. Other major advantages of
black box modeling include the
establishment of system boundaries and the
intentional obfuscation of complexity and/or
Intellectual Property (IP).

Proceedings of the 2024 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MBSE Strategies: Avoiding Cyclic Project Usage Dependencies using Blackbox and Whitebox Models, Kolligs, et
al.

Page 3 of 7

White box models or views are the
reciprocal of black box models because white
box shows the internal workings of a system
while acknowledging the same external
behaviors as the black box. Figure 3 is a
simple example depicting a black box and
white box model.

Figure 3: Examples of a Black Box Model and

White Box Model

3. THE CHALLENGE
The authors were presented with a

challenge in which the stakeholders of a new
engineering effort wanted to develop a model
utilizing the feedback from external partners
such as subcontractors. The concept was to
drive lower-level design and development
based on high-level needs and expectations.
Additionally, those lower-level designs
would influence the higher-level design and
therefore will have to be consolidated into the
higher-level model to facilitate the final
design. In short, a preliminary model that
established the system boundary, desired
inputs, and expected outputs was needed by
the external partners so that they could
develop their subsystems which would then
be integrated into the system model. The
proceeding sections describe the benefits of
this approach and why the cyclic usage
challenge had to be addressed.

3.1. One Big Model vs. Distributed
Projects

The first goal was to determine if there
would be a single, larger model with
everyone having access or if the project
would be distributed to the external actors for
their contributions. The one big model allows
for all the data to be centrally located, while
the distributed project would provide some
increased performance at scale. Each of these
approaches carry obvious logistical
challenges. The large model needs to be
accessed by different companies using an
agreed-to and accessible tool. The distributed
project also requires some of the same
agreed-to, accessible tool but also introduces
data availability issues, i.e. data is only
available to the original system developer
when iterations are sent.

From the MBSE perspective, a single, large
model with many people working in it will
invariably lead to more iterations or
revisions. More revisions translate to more
work for the modeling tool to maintain the
changes, or deltas, between different
revisions. A higher revision count will
eventually reach performance issues as those
revisions are loaded or modified. A higher
revision count also has a drastic negative
impact on more intensive model operations
such as merges and publishing to a cloud. The
advantage would be a fully integrated model
with full data accessibility.

Distributed projects, or an approach in
which multiple companies work on their
portion of the overall project but only submit
major revisions or an end product, mitigated
the potential performance issues of the larger
singular and, for this case, the team did not
require or really benefit from full data
accessibility. The challenge was to integrate
the distributed models into a cohesive final
system model. The initial thought was to
include each distributed subsystem model as
a project usage into the system model, but the

Proceedings of the 2024 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MBSE Strategies: Avoiding Cyclic Project Usage Dependencies using Blackbox and Whitebox Models, Kolligs, et
al.

Page 4 of 7

team would later learn of cyclic usages and
their issues.

3.2. Configuration Management

To properly execute the distributed project
approach, the team needed to provide a
configuration managed version of their
system model to external actors to facilitate
subsystem development. It was
straightforward to provide an iteration of the
original system model to each subsystem
developer, but the CM assurances were a
concern. The solution was to mandate that the
original system model be imported into the
subsystem model as a project usage. Recall
that a project usage is read only which
provides configuration management.

3.3. Cyclic Usages

The combination of solutions to mitigate the
performance issues of a large model and
provide adequate configuration management
gave birth to a potential for cyclic usages. If
the subsystem models are using the original
system model as a project usage (which is
preferred), then the original system model
cannot import the subsystem models as
project usages (which is preferred) as it
would create the cyclic usage depicted in
Figure 1. A project usage architecture
solution was needed to mitigate this cyclic
usage challenge.

Many modeling tools offer another option
like project usages that involves multiple
model branches that are then merged back
into the trunk. When considering branches
and merges there are two (2) general factors
to consider, and unfortunately, they are
conflicting. First, keep revisions of the trunk
low, or in other words, use branches as long
as possible. This consideration is good for
long term model health and future operations
such as migrations, exports, and managing
history. This is like the issues of a singular,
large model. The second factor is to keeping
branches small enough to allow for merging.

Merging, as currently available in the
accessible modeling tools, is a memory
intensive process. If the branches get large
and the differences from the trunk grow, then
the memory requirements of a merge
increase. The merge capabilities of the
modeling tool being used by the team were
difficult and inconsistent, which led to that
option being removed from consideration.

4. FINDING A SOLUTION

There are two (2) potential solutions to the
cyclic usage issue. The first is to ignore it
which translates to serial process in which the
original system model that is distributed to
the external actors is never updated as the
system design process iterates. This solution
is not viable in a multi-partner systems
engineering effort. The second solution is to
not have the usages be cyclical – but what
does that architecture look like and is it
rational?

4.1. Another System Model

The reason that the project usages in this
case might be perceived as potentially cyclic
is based on belief that there can only be a
single system model. This team considered
the potential of a second system model that
would integrate the details from external
partners. While it is true that the original
system model disseminated to external actors
is describing the same system as the final
integrated system model, they serve different
purposes. The original model is the
expansion of customer needs into
requirements and logical design concepts.
This represents divergent systems thinking as
the problem space is being defined and the
solution space is being opened. The
integrated system model is the convergence
of subsystem design details that home in on a
system solution.

Proceedings of the 2024 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MBSE Strategies: Avoiding Cyclic Project Usage Dependencies using Blackbox and Whitebox Models, Kolligs, et
al.

Page 5 of 7

4.2. Black Box and White Box
Principles

The different content expressed in the
original and integrated system models align
with black box and white box modeling as
described earlier in this paper. The original
model is concerned with how the system will
interact with its environment and represents a
black box perspective of the system. These
concepts facilitate system architecture
design, requirements development, analyses
based on the inputs and outputs, and external
interfaces maturation.

The integrated system model includes the
details as provided by the external actors
which is in line with a white box model. The
inherited subsystem models provide further
detail to the system to create the white box
perspective. As the integrated system model
matures it provides the necessary data to
perform analysis on subsystem interactions,
lower-level interfaces, requirements
traceability across the subsystems,
verification method traceability, and
potentially subsystem level test data.

4.3. Path Forward

This revelation led to an extensible project
usage architecture that is depicted in Figure
3. Recall that an arrow means that the source
project is using the contents of the destination
project. For example, from Figure 3, System
WB (White Box) is using Subsystem A
which is using System BB (Black Box).

The architecture includes a project usage
from System WB to System BB which
mitigates two (2) minor issues:

1. Designating which subsystem project
usage supports the System WB project
need for data in the System BB model.

2. Nested project usages, which involves
updating each echelon of project
usages.

Figure 4: Project Usage Architecture Solution

5. DESIRED BENEFITS

Every and any approach comes with
benefits and issues that must be accepted by
the adopting engineering effort and their
circumstances. The team decided that the
following benefits were highly desired:
 Distributed – mitigates the performance

issues of a potentially massive model.
 Configuration Management –

inherently protects the System BB
model from external actors and
Subsystem models from System WB
usages.

 Extensible – supports many subsystems
and external actors.

 Reusable – can be templated and used
throughout the organization with teams
that have similar situations.

 IP Obfuscation – the system integrator
can maintain control of IP while
disseminating a meaningful model to
support partner needs.

 Product Line Engineering (PLE) – the
customer has plans for PLE that are well
supported by the WB model details

Proceedings of the 2024 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MBSE Strategies: Avoiding Cyclic Project Usage Dependencies using Blackbox and Whitebox Models, Kolligs, et
al.

Page 6 of 7

tracing to the requirements in the BB
model.

6. ACCEPTED ISSUES

The primary concerns or issues of this
approach come directly from the issues of a
distributed model. As these were accepted at
the onset of the approach, each was mitigated
according to the team’s needs and interests.

6.1. Non-Real-Time Data

Since external data is imported via project
usages in lieu of a singular model, data is not
available in near real time. This means that
changes from external actors require
additional steps to update the imports of the
System WB model. While this could be
considered a large concern to some
engineering efforts, this team accepted that
this activity would be rare and easily dealt
with during those exceptions.

6.2. Multiple System Models

The second concern was having two (2)
system models: a black box and a white box.
As discussed above, this was mitigated early
by maintaining that each continue to serve
their primary purpose. The issue becomes
accessing the correct model for the purpose
of the modeler or viewer. If they are trying to
access the system to modify requirements or
another black box activity, they must access
the System BB model. Conversely, if the
modeler or reviewer are seeking white box
model features, they must log into the System
WB model. The challenge is if there are
activities that requires an update to both
models – in which the case is that the BB
model must be updated first, committed to
the server, then the WB model needs to
update the BB project usage before
proceeding onto the task at hand.

The team decided to accept this risk. Their
intent had been that once the System BB
model was released, changes to that model
would be undesirable and limited to critically

important iterations. The concept was that
changes to the System BB model would also
have to be propagated to the external actors
who may have additional impacts. Likewise,
the System WB model is predominantly
comprised of data shared from other models,
and therefore does not update often. It is
mostly being leveraged for the assessment of
the models, their dependencies, some
analysis, and their exchanges of information.

The two (2) system model approach was
also evaluated regarding contract
deliverables. The project needed to ensure
that individual contract deliverables could
reside in either of the system models, not split
amongst both. This was not perceived as
challenging since the models, as explained
above, serve different purposes and those
purposes align with the contract deliverables.

6.3. Issue Summary

In summary, the issues were: Non-Real-
Time Data and Two (2) System Models. Both
issues were accepted by the team in this case
and for this business product. The consensus
was that the benefits outweigh the potential
issues.

7. Summary and Conclusion

Every digital engineering framework and
modeling approach will include benefits and
concerns. It is important to customize the
response, within reason and based on the
available resources, to the needs of the
project and contract. For this case, the
consideration of a large, singular model was
overturned for a distributed model. The
potential for a cyclic usage, which can be
catastrophic in both performance issues and
data loss, was mitigated by an innovative
approach that allowed for two (2) systems
models – one (1) Black Box and one (1)
White Box. The concerns of having two (2)
system models were mitigated via acceptance
and understanding that each system model
would play its part appropriately based on

Proceedings of the 2024 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MBSE Strategies: Avoiding Cyclic Project Usage Dependencies using Blackbox and Whitebox Models, Kolligs, et
al.

Page 7 of 7

model function, system development, and
contract deliverables.

8. REFERENCES
[1] "Start using a project in your project - MagicDraw
19.0 LTR - No Magic Documentation," CATIA No
Magic, [Online]. Available:
https://docs.nomagic.com/display/MD190/Start+usi
ng+a+project+in+your+project. [Accessed 2024].

[2] "Identifying Package Dependencies - MagicDraw
19.0 LTR - No Magic Documentation," CATIA No
Magic, [Online]. Available:
https://docs.nomagic.com/display/MD190/Identifyin
g+Package+Dependencies. [Accessed 2024].

[3] M. Green, "The Application of Black Box Theory
to System Development," in System Engineering in
DC Proceedings (SEDC), Washington, DC, 2014.

.

