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• Systems contain sensitive information
• Intellectual property (ASICs, FW, SW)

• Configuration

• Transient operational data

• Recoverable information can be exploited
• Systems need to be cleansed  

• Typical approach is kinetic physical destruction
• Potentially dangerous, conspicuous, questionable completeness

• FPGA based systems support non-destructive approaches
• Unlike ASICs, FPGA IP can be zeroized

Information in Electronic Systems
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• An FPGA is at the center of many complex systems
• The FPGA configuration data is zeroizable IP

• An FPGA system contains many forms of storage media
• Volatile media
• SRAM, DRAM, etc.

• Non-Volatile
• Flash (bulk, managed)

• Any media can contain sensitive information
• Proper sanitization requires knowledge of media 

characteristics

• Media can be susceptible to data remanence
• Data retention beyond intention

• Data may be retained as physical changes

FPGA Based Electronic Systems
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SRAM Data Retention

• SRAM is volatile by design
• Loss of power should eliminate data

• Loss of data is random over time

• Power-off data decay can be longer than expected
• Restoring power can allow for recovery

• SRAM decay dependencies:
• Temperature
• Low temperatures may push retention to hours or days

• Silicon technology

• System design

Survey of SRAM data retention times.1

(20% data loss)1S. Skorobogatov, “Low temperature data remanence in static RAM,” University of Cambridge 

Computer Laboratory, Cambridge, UK, Tech. Rep. UCAM-CL-TR-536, June 2002.
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SRAM Imprinting 

• Typical SRAM cells are painstakingly balanced
• Initial power-on state is statistically random
• Operational wear can tip the balance (adds bias)

• Static data retention causes physical changes
• Negative Bias Thermal Instability (NBTI)
• Increases PFET threshold voltage 

• Effects dependent on silicon technology

• Bias makes power-on state less random
• Recovery can reveal previously held static data

• Reducing imprinting
• Dynamic values avoid changes caused by NBTI
• Elimination of bias requires leveling of the transistor wear 

Typical balanced SRAM cell
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FPGA Configuration Remanence

• FPGA internal configuration is SRAM
• Operational configuration cannot be encrypted

• Configuration SRAM will power-up randomly
• Normal operation clears configuration state

• Recovery of power-up state can reveal prior 

contents (imprinting)

• FPGA remanence has been characterized
• Physical testing backed by models

• Empirical data aligns to model 

• Modeling indicates theoretical saturation

• Mitigations also being studied
Probability of FPGA configuration data recovery vs aging

in a common 90nm FPGA.
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DRAM Remanence

Storage 

Capacitor

Access 

Transistor

Select

D
a

ta

Typical DRAM storage cell

• DRAM data is always decaying
• Circuit has no active hold after write

• Data values must be “refreshed” periodically

• Optimized to reduce decay

• Low temperatures can greatly increase decay time
• Enables the “cold boot attack” (typically < -25C)

• Successful recovery demonstrated with DDR1-4
• One experiment achieved <0.17% data loss after one hour
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Flash Memory Imprinting

• Flash memory is based on floating gate transistor cells
• Charge forced into or out of floating gate

• Trapped charge encodes the data value

• Once programmed it cannot be completely erased
• Some charge becomes permanently trapped

• Difference between unused and erased cells is significant
• Careful read operations can reveal latent charge (imprint)

• Flash should be pre-conditioned to avoid remanence 
• Repeated program/erase cycles on all cells

• Multi-Level Cell (MLC) flash makes recovery more difficult

Floating gate transistor

Control Gate

Oxide
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Managed Flash Considerations

• Managed flash (eMMC, NVMe) combines a controller with bulk flash
• Supports increased performance and reliability 

• Controller adds abstraction between logical and physical flash locations
• Erase commands remap physical flash locations
• Physical erasure done opportunistically

• Bad blocks can be mapped out

• Complete erasure (zeroization) requires controller to cooperate
• More flash to erase than what is advertised (spare cells)

• Must break through the abstraction layer

Abstraction of logical to physical flash locations in managed flash

Logical 

 hysical 
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Remanence Mitigations

• Do not rely on power-off decay of volatile memory
• Low temperatures are a threat

• Remember that SRAM can imprint
• Prevent long-term static data if possible

• Pre-condition flash media 
• Repeated R/W cycles can reduce imprinting effects

• Prevent access to FPGA configuration state
• Lock down JTAG and other interfaces

• Encrypt all external media
• Any potentially sensitive information

• FPGA and all media should be zeroized
• More complex than writing zeros
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FPGA System Zeroization

• Platform agnostic zeroization for FPGA systems
• Shim between application and media
• Leverages existing media interface

• Direct access to FPGA configuration

• Parallelized zeroization of all media
• Operations customed to media type/size

• Selective zeroization of application
• Zeroization infrastructure remains resident

• Goal: Drop-in integration
• Configuration wizards

• Encapsulation of application design

• Integration with FPGA vendor toolchain

• Current SBIR Phase II program with DEVCOM 

GVSC is developing this solution
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